

DNAge

Analisi genetica per la valutazione della lunghezza media dei telomeri

NOME

CENTRO AUTORIZZATO

Via Fermi, 63/F 42123 Reggio Emilia tel: 0522.767130 - fax: 0522.1697377 www.diagnosticaspire.it - info@diagnosticaspire.it

LABORATORIO CERTIFICATO IN QUALITÀ ISO 9001:2015

NOME

Nome Cognome

DATA

gg/mm/aaaa

RISULTATI

LUNGHEZZA MEDIA DEI TELOMERI	5.46 kb
ETÀ ANAGRAFICA	28 anni
ETÀ BIOLOGICA STIMATA	36.6 anni
INVECCHIAMENTO	+ 8.6 anni

ETÀ 28

Lunghezza telomeri: 5,46Kb

RESPONSABILE TECNICO DI LABORATORIO

Laboratorio Analisi

DIAGNOSTICA SPIRE srl

Via Fermi, 63/F, 42123 Reggio Emilia
Aut. 163 del 2015
Direttore Reggio Estile Labertatorio
Dott.ssa Pamela Paolari
Iscr. Albo n. ERM A02972

RESPONSABILE SCIENTIFICO Dr. Flavio Garoia – PhD Genetics Sciences

lui fani

COMMENTO

Il test ha evidenziato una lunghezza telomerica media inferiore a quella attesa, questa condizione indica un'età biologica superiore a quella anagrafica, legata ad un'accelerazione del processo di invecchiamento.

NOME

DATA

Nome Cognome

gg/mm/aaaa

COSA PUOI FARE TU

La prevenzione dell'accorciamento precoce dei telomeri richiede un approccio multifattoriale che integri stili di vita sani, gestione dello stress e un ambiente favorevole. Sebbene la ricerca sulle strategie per proteggere i telomeri sia ancora in evoluzione, l'adozione di queste misure può migliorare la qualità della vita e favorire un invecchiamento sano.

INTEGRAZIONE CONSIGLIATA

Alcuni integratori possono supportare la salute telomerica:

- Vitamina D: livelli ottimali sono associati a telomeri più lunghi.
- Acido folico e vitamina B12: importanti per la metilazione del DNA e la salute genomica.
- Omega-3: riducono l'infiammazione sistemica.
- Antiossidanti: vitamina E, resveratrolo, coenzima Q10, EGCG (Epigallocatechingallato, contenuto nel the verde) rallentano l'invecchiamento cellulare.
- Astragalo: alcuni studi suggeriscono che composti derivati dall'astragalo possono stimolare la telomerasi, un enzima che rallenta l'accorciamento dei telomeri. Tuttavia, le evidenze sono ancora limitate.

ALIMENTAZIONE

- Dieta ricca di antiossidanti: consuma alimenti come frutta e verdura (ad es. bacche, spinaci, broccoli) che contengono vitamine C ed E, polifenoli e carotenoidi. Gli antiossidanti combattono lo stress ossidativo, un fattore che accelera l'accorciamento dei telomeri.
- Omega-3: gli acidi grassi omega-3, presenti in pesce grasso (es. salmone, sgombro), semi di lino e noci, hanno dimostrato di proteggere i telomeri riducendo l'infiammazione.
- Riduzione degli zuccheri raffinati e grassi saturi: questi alimenti aumentano l'infiammazione e lo stress ossidativo, accelerando il processo di accorciamento telomerico.
- Integrazione di fibre: una dieta ricca di fibre è associata a una minore infiammazione e a una migliore salute cellulare.

STILE DI VITA

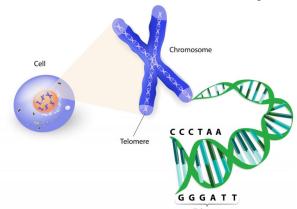
- Controllare il peso corporeo: l'obesità è associata ad un'accelerazione dell'accorciamento dei telomeri a causa dell'infiammazione cronica e dell'aumento dello stress ossidativo.
- Evitare il fumo: il fumo accelera l'accorciamento dei telomeri a causa dello stress ossidativo e delle infiammazioni che provoca.
- Ridurre l'esposizione a inquinanti: l'inquinamento ambientale è un fattore significativo di accorciamento telomerico. L'uso di filtri d'aria e il tempo trascorso in aree verdi possono aiutare.
- Limitare il consumo di alcol: un consumo moderato o nullo di alcol è preferibile per preservare la lunghezza dei telomeri.
- Dormire almeno 7-8 ore per notte: un sonno adeguato aiuta a ridurre lo stress e l'infiammazione sistemica. La privazione cronica di sonno è stata associata a telomeri più corti.
- Esercizio aerobico: l'attività fisica moderata e regolare (es. camminata veloce, corsa leggera) è associata a telomeri più lunghi, probabilmente grazie al miglioramento del metabolismo e alla riduzione dello stress ossidativo.
- Evitare esercizi estremamente intensi o prolungati: l'esercizio eccessivo può aumentare lo stress ossidativo e l'infiammazione, con effetti potenzialmente negativi.
- Tecniche di rilassamento: le tecniche di meditazione, come la mindfulness, e lo yoga possono ridurre i livelli di cortisolo, un ormone dello stress cronico associato all'accorciamento telomerico.

DISCLAIMER

I risultati illustrati, come pure le considerazioni e le spiegazioni contenute nelle pagine di questo fascicolo, non devono essere considerati come una diagnosi medica. I risultati devono essere letti come un'approssimazione dello stato di invecchiamento. È importante tenere presente che l'informazione genetica è solo una parte dell'informazione totale necessaria ad avere una completa visione dello stato di salute di una persona. I dati qui riportati rappresentano, quindi, uno strumento a disposizione del medico curante/specialista di riferimento per integrare le informazioni anamnestiche, formulare una corretta valutazione dello stato fisiologico del paziente e suggerire un adeguato trattamento personalizzato. I modelli statistici utilizzati per eseguire questo test possono cambiare nel corso del tempo, in considerazione dei costanti aggiornamenti scientifici.

gg/mm/aaaa

IL TEST

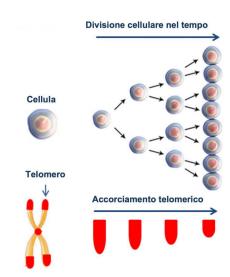

DNAge è un'analisi genetica volta a determinare la lunghezza media dei telomeri per stimare l'età biologica delle cellule.

Il DNA, estratto da cellule di mucosa buccale, viene analizzato utilizzando la tecnica PCR quantitativa ** (Absolute umano TelomerLength quantificazione qPCR Assay Kit (AHTLQ); ScienceCell # 8918). L'età biologica approssimativa viene stimata unendo modelli statistici e convalide interne.

DOMANDE?

All'interno del nucleo di ogni cellula, i cromosomi sono quelle strutture complesse nelle quali si organizza il DNA. Ciascun cromosoma, infatti, è costituito da un lungo filamento di DNA e contiene da centinaia a migliaia di geni.

I geni sono porzioni di DNA costituiti da una successione ben precisa di basi nucleotidiche, i mattoni che formano il DNA.


Nei geni sono custodite le informazioni che permetto alla cellula di codificare le proteine essenziali al suo funzionamento, quindi alla sua sopravvivenza

Le estremità dei cromosomi si chiamano telomeri e sono composti da sequenze di DNA altamente ripetuto. I telomeri svolgono l'importante funzione di proteggere i cromosomi dal deterioramento e dalla fusione con altri cromosomi. Con un'estrema semplificazione si potrebbe dire che funzionano come le protezioni di plastica alle estremità dei lacci delle scarpe, utili per evitarne lo sfilacciamento.

La lunghezza dei telomeri non rimane costante ma tende a calare nel corso della vita: ogni volta che le nostre cellule si dividono, infatti, si ha un accorciamento dei telomeri in quanto gli estremi terminali dei cromosomi non vengono duplicati completamente.

L'accorciamento dei telomeri procede fino al raggiungimento di una lunghezza critica associata ad una condizione che prende il nome di "senescenza replicativa". Arrivate a quel punto, le cellule non sono più in grado di dividersi e i tessuti non si rinnovano: tutto ciò è alla base dell'invecchiamento cellulare di ogni tessuto dell'organismo.

L'accorciamento dei telomeri non è una conseguenza dell'invecchiamento, è proprio alla base dell'invecchiamento.

NOME

Nome Cognome

DATA

gg/mm/aaaa

Se l'accorciamento dei telomeri è un processo inevitabile, qual è l'utilità di un test in grado di valutarne la lunghezza?

L'invecchiamento non è uguale per tutti: \ fattori, sia di natura ambientale che comportamentale, possono contribuire ad accelerare l'accorciamento dei telomeri inducendo un processo di invecchiamento più rapido.

Nella lunghezza dei telomeri è contenuta l'informazione del numero massimo di divisioni cui la cellula potrà andare incontro nel corso della sua vita. Qualsiasi fattore in grado di danneggiare le nostre cellule accelera la velocità di invecchiamento: per riparare i tessuti danneggiati, infatti, le cellule si dividono più velocemente e questo porta ad un accorciamento dei telomeri più rapido.

Molti fattori accelerano il processo di invecchiamento, in particolar modo infiammazione, stress ossidativo e insulino-resistenza, dovuta ad innalzamenti eccessivi della glicemia nel sangue.

La lunghezza dei telomeri rappresenta dunque un indicatore dell'età biologica rispetto all'età cronologica di una persona: più lunghi sono i nostri telomeri, più bassa è la nostra età biologica, mentre più corti sono i nostri telomeri, più alta è la nostra età biologica.

Che differenza c'è fra età biologica e cronologica?

Età cronologica e biologica non coincidono necessariamente: mentre l'età cronologica corrisponde all'età anagrafica cioè al trascorrere lineare del tempo, l'età biologica si chiama in questo modo perché è l'espressione della qualità biologica dell'organismo, cioè della sua funzionalità biologica in tutte le sue manifestazioni.

L'età biologica è una combinazione fra il personale patrimonio genetico e lo stile di vita ed è influenzata dalle scelte quotidiane.

Conoscere la propria età biologica può fornire incentivi e conoscenze per migliorare il proprio stile di vita, apportando cambiamenti positivi.

ATTENZIONE!

È importante ricordare che il processo di invecchiamento non è solo un fattore "estetico": più corti sono i telomeri, più instabile diventa il DNA e maggiore è il rischio di insorgenza di malattie. L'accorciamento dei telomeri è correlato a varie patologie legate all'età, tra cui malattie neurodegenerative, autoimmuni e cardiovascolari.

gg/mm/aaaa

BIBLIOGRAFIA

Arsenis N.C. et al., Physical activity and telomere length: Impact of aging and potential mechanisms of action, Oncotarget, 2017, Vol. 8, (No. 27), pp: 45008-45019

Astuti Y. et al., Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis, Environmental Research, Volume 158, October 2017, Pages 480-489

Aubert G. and Lansdorp, Telomeres and Aging, Physiol Rev 88: 557–579, 2008; doi:10.1152/physrev.00026.2007

Cribbet R.M. et al., Cellular Aging and Restorative Processes: Subjective Sleep Quality and Duration Moderate the Association between Age and Telomere Length in a Sample of Middle-Aged and Older Adults, Sleep, 2014, Volume 37, Issue 1, January, Pages 65–70, https://doi.org/10.5665/sleep.3308

Cous-Bou M. et al., Mediterranean diet and telomere length in Nurses'Health Study: population based cohort study, BMJ 2014;349: g6674

Elissa Epel et al., Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres, Ann N Y Acad Sci. 2009 August; 1172: 34–53. doi:10.1111/j.1749-6632.2009.04414.x.

James S.M. et al., Sleep Duration and Telomere Length in Children, The Journal of Pediatrics, Volume 187, August 2017, Pages 247-252.e1

Kawanishi S. and Oikawa S., Mechanism of telomere shortening by oxidative stress, Ann N Y Acad Sci, 2004 Jun:1019:278-84, doi: 10.1196/annals.1297.047

Kordinas V. et al., The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect?, Genes 2016, 7, 60

Leung, C.W., et al., Soda and cell aging: Associations between sugar-sweetened beverage consumption and Leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. American Journal of Public Health, 2014, 104(12), 2425-31. doi: 10.2105/AJPH.2014.302151

Ligi Paul, Diet, nutrition and telomere length , The Journal of Nutritional Biochemistry, Volume 22, Issue 10, October 2011, Pages 895-901, https://doi.org/10.1016/j.jnutbio.2010.12.001

Masood A. Shammas, Telomeres, lifestyle, cancer and aging, Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):28–34. doi: 10.1097/MCO.0b013e32834121b1

Perissinotto Carla et al., Loneliness in Older PersonsA Predictor of Functional Decline and Death, Arch Intern Med. 2012;172(14):1078-1084. doi:10.1001/ archinternmed.2012.1993

Prasad K.N. et al., Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents, Mechanisms of Ageing and Development, Volume 164, June 2017, Pages 61-66

Ridout K.K. et al., Early life adversity and telomere length: a meta-analysis, Molecular Psychiatry volume 23, 2018, pages 858–871

Rossiello F. et al., Telomere dysfunction in ageing and age-related diseases, Nat Cell Biol. 2022 February; 24(2): 135–147. doi:10.1038/s41556-022-00842-x

Shalev I. et al., Stress and telomere biology: a lifespan perspective, Psychoneuroendocrinology, 2013 Sep;38(9):1835-42, doi: 10.1016/j. psyneuen.2013.03.010. Epub 2013 Apr 29.

Vera E. et al., The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2012 Oct 25;2(4):732-7

von Zglinicki T., Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 2002, 27:339–344. doi: 10.1016/S0968-0004(02)02110-2

Wang X. et al., Leukocyte telomere length and depression, anxiety and stress and adjustment disorders in primary health care patients, BMC Psychiatry, 2017, Volume 17, article number 14

