

Diagnostica Spire s.r.l.

Via Fermi, 63/F 42123 Reggio Emilia tel: 0522.767130 - fax: 0522.1697377 www.diagnosticaspire.it - info@diagnosticaspire.it

LABORATORIO CERTIFICATO IN QUALITÀ ISO 9001:2015

DATA

gg/mm/aaaa

INTRODUZIONE			
COME SI LEGGE IL REFERTO			
SIMBOLI UTILIZZATI	pag. 4		
TABELLA RIASSUNTIVA			
INTERPRETAZIONE DEL RISULTATO	pag. 5		
SUGGERIMENTI NUTRIZIONALI	pag. 6		
REFERTO DETTAGLIATO	pag. 7		
TABELLA DEI RISULTATI	pag. 8		
DESCRIZIONE SCIENTIFICA DEI GENI ANALIZZATI	pag. 9		
GLOSSARIO			
BIBLIOGRAFIA	pag. 10		

NO

DATA

Nome Cognome

gg/mm/aaaa

INTRODUZIONE

DNA STRESS EXPLORER

Lo stress è uno stato di tensione fisica e mentale attivato da una reazione tipica di adattamento del corpo ad un cambiamento fisico o psichico. La capacità individuale di rispondere ai fattori stressanti è legata ad un complesso equilibrio ormonale, nel quale le Catecolamine (Adrenalina e Noradrenalina) e la Serotonina svolgono un ruolo fondamentale. Lo stress, se non adeguatamente controllato, può condurre a problemi di natura psicologica, ridurre lo stato di benessere e aumentare il rischio di sviluppare patologie gravi come quelle cardiovascolari.

tutte le sostanze necessarie per il buon funzionamento del nostro organismo.

Gli alimenti intervengono inoltre sulla regolazione dei meccanismi che controllano l'umore, l'attenzione, la memoria e l'appetito modificando l'azione dei neurotrasmettitori, molecole "fabbricate" dalle cellule nervose a partire dalle sostanze introdotte nell'organismo attraverso la dieta. È quindi chiaro che il primo evento in grado di modificare questa complessa catena è proprio la disponibilità di materia prima, cioè di cibo. Si mangia, oltre che per soddisfare gusto, olfatto, vista, per acquisire energia e rifornire l'organismo delle sostanze essenziali per il benessere e il buonumore.

Gli alimenti costituiscono la fonte primaria del nostro benessere, fornendo

L'analisi dei meccanismi genetici che regolano la suscettibilità allo stress e che controllano umore, appetito e memoria sono di fondamentale importanza per individuare eventuali compromissioni che ne alterano la funzionalità e intraprendere un percorso personalizzato per correggere alimentazione stile di vita e ritrovare l'equilibrio psico-fisico.

DATA

gg/mm/aaaa

COME SI LEGGE IL REFERTO

- La TABELLA RIASSUNTIVA riporta l'elenco degli ambiti metabolici indagati e la sintesi dei rispettivi risultati ottenuti dall'analisi del suo DNA. In questo modo Lei può avere una rapida visualizzazione della sua situazione generale e verificare la eventuale presenza di situazioni compromesse.
- I SUGGERIMENTI NUTRIZIONALI hanno il compito di semplificare la scelta degli alimenti in funzione dell'assetto genetico, in queste troverà i vari alimenti classificati in funzione del risultato del test. I cibi, infatti, sono stati divisi in consigliati quando per le loro caratteristiche nutrizionali favoriscono alcune situazioni metaboliche sfavorevoli o sconsigliati se esistono dei motivi per limitarne l'apporto.
- Il REFERTO DETTAGLIATO contiene una spiegazione particolareggiata del funzionamento del suo metabolismo in relazione ai geni analizzati.
- La TABELLA DEI RISULTATI riporta il suo profilo genetico per i geni analizzati.
- Gli APPROFONDIMENTI SCIENTIFICI forniscono maggiori approfondimenti sulle caratteristiche dei geni analizzati e sulle basi scientifiche del test.
- Il GLOSSARIO riporta la spiegazione dei termini tecnici utilizzati nel referto, per una più facile comprensione dei testi.
- La BIBLIOGRAFIA riporta le referenze scientifiche del test.

SIMBOLI UTILIZZATI

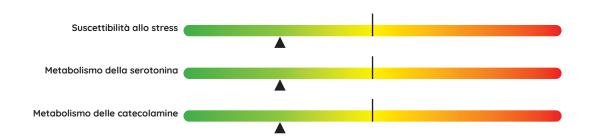
Indica che le varianti individuate nell'analisi non alterano in modo sfavorevole l'attività enzimatica delle proteine da loro codificate e/o il rischio associato ad alcune patologie.

Indica che le varianti individuate nell'analisi alterano in modo leggermente sfavorevole l'attività enzimatica e/o il rischio associato ad alcuni disturbi o patologie.

Indica che le varianti individuate nell'analisi alterano in modo particolarmente sfavorevole l'attività enzimatica con un conseguente incremento del rischio di sviluppare alcuni disturbi o patologie associate.

I risultati illustrati, come pure le considerazioni e le spiegazioni contenute nelle pagine successive di questo fascicolo, non devono essere considerati come una diagnosi medica.

È importante tenere presente che l'informazione genetica è solo una parte dell'informazione totale necessaria ad avere una completa visione dello stato di salute di una persona, i dati qui riportati rappresentano quindi uno strumento a disposizione del medico curante per formulare una corretta valutazione dello stato fisiologico del paziente e suggerire un adequato trattamento personalizzato.


NOME

Nome Cognome

DATA

gg/mm/aaaa

TABELLA RIASSUNTIVA

RESPONSABILE TECNICO DI LABORATORIO

Laboratorio Analisi SPIRE

Aut. 163 del 2015 Direttore Responsabile Laboratorio Dott ssa Pamela Paolani Iscr. Albo n. AA 97/1650 RESPONSABILE SCIENTIFICO
Dr. Flavio Garoia - PhD Genetics Sciences

lai fani

INTERPRETAZIONE DEL RISULTATO

L'indice di rischio genetico è calcolato sulla base dei geni analizzati in riferimento alla distribuzione dei genotipi (e dei fattori di rischio genetici associati) nella popolazione caucasica (*David HB, Judy C, Hongyu Z. Comparisons of multi-marker association methods to detect association between a candidate region and disease. Genet Epidemiol 2010;34(3): 201–12*).

MEDIA DELLA POPOLAZIONE

RISCHIO INFERIORE ALLA MEDIA

RISCHIO SUPERIORE ALLA MEDIA

SUGGERIMENTI NUTRIZIONALI

GRUPPO ALIMENTARE	DA PREFERIRE	DA LIMITARE	SCONSIGLIATI
CEREALI	 cereali alternativi (farro, avena, segale, kamut) e pseudocereali (quinoa, grano saraceno, amaranto) 		• cereali raffinati (pasta, riso, pane bianchi)
CARNE		carni grasse	carni lavorate
PESCE			
UOVA, LEGUMI E PROTEINE VEGETALI			
FORMAGGI E LATTICINI	formaggi light		
VERDURA	patatecarotezucca		
FRUTTA	bananeananas	• fragole	
CONDIMENTI E METODI DI COTTURA	erbe aromatichepanna vegetale		burro olio di palma
DOLCI	• dolci integrali e poco zuccherati		dolci e snack confezionati
DOLCIFICANTI	• zucchero di canna	steviaaspartame	• zucchero bianco
SNACK			patatine in sacchetto
BEVANDE	caffè decaffeinato caffè d'orzo	• succhi di frutta zuccherati	• caffè
ALCOLICI		• vino	• birra

I suggerimenti nutrizionali qui riportati sono stati elaborati in base alla costituzione genetica rilevata dal test. Dal momento che la sua situazione clinica e fisiologica (es. presenza di eventuali patologie o disturbi) può modulare l'idoneità degli alimenti, i suggerimenti nutrizionali qui riportati vanno valutati dal medico o dal nutrizionista che conoscono la sua storia clinica e sono in grado di utilizzare le informazioni per formulare un piano alimentare personalizzato.

DATA

gg/mm/aaaa

REFERTO DETTAGLIATO

GENE SNP	AREA METABOLICA	GENOTIPO	RISULTATO	DESCRIZIONE
COMT rs4680	Metabolismo catecolamine	AA		Il genotipo rilevato riduce l'attività enzimatica, quindi comporta livelli di dopamina superiori. Questa situazione è correlata con una soglia del dolore più bassa, una maggiore vulnerabilità allo stress, ma anche più efficiente elaborazione delle informazioni e delle capacità cognitive.
MAOA rs6323	Metabolismo neurotrasmet- titori	АА		Il genotipo rilevato è correlato con una maggiore attività enzimatica ed efficienza di degradazione dei neurotrasmettitori monoamminergici: serotonina, noradrenalina e dopamina. Questa situazione è stata associata ad una maggiore suscettibilità a sviluppare disturbi dell'umore, in particolare attacchi di panico.
SLC6A4 rs25531	Metabolismo serotonina	AG	-	Il genotipo rilevato è correlato con una modesta riduzione dei livelli di serotonina, che può influire negativamente sull'umore e sul controllo dell'appetito.
MTHFR rs1801133	Metilazione	CC	·	Il genotipo CC è correlato con un normale metabolismo dell'acido folico, che favorisce il metabolismo dei neurotrasmettitori.
FTO rs9939609	Appetito	АА		Il genotipo AA è correlato con una maggior rischio di perdita di controllo dell'appetito ed un'aumentata sensazione di fame.
MC4R rs17782313	Appetito	TT	C	Il genotipo rilevato non è correlato con aumento del rischio di sviluppare disordini alimentari e perdita del controllo dell'appetito o aumento del senso di fame.

COSA PUÒ FARE LEI?

- Per la sintesi della serotonina sono fondamentali i carboidrati, per cui risulta particolarmente importante mantenere un giusto apporto di questi nutrienti nella dieta.
- Per lei è particolarmente importante praticare attività fisica, in quanto stimola la produzione di serotonina ed endorfine, molecole che comportano un miglioramento dell'umore e favoriscono il riequilibrio psico-fisico.
- Riduca il consumo di alcool ed eviti il fumo in quanto questi comportamenti riducono ulteriormente la biodisponibilità di folati, situazione che contribuisce a compromettere ulteriormente il metabolismo dei neurotrasmettitori.

gg/mm/aaaa

TABELLA DEI RISULTATI

COMT	rs4680	AG
MAOA	rs6323	CC
MTHFR	rs1801133	TT
FTO	rs9939609	AA
MC4R	rs17782313	СТ
SLC6A4	rs25531	TT

RESPONSABILE TECNICO DI LABORATORIO

Laboratorio Analisi

SPIRE

Aut. 163 del 2015 Direttore Responsabile Laboratorio Dott ssa Pamela Paolani Iscr. Albo n. AA 574650

DNA STRESS EXPLORER

NOME

Nome Cognome

DATA

gg/mm/aaaa

DESCRIZIONE SCIENTIFICA DEI GENI ANALIZZATI

La serotonina è un neurotrasmettitore noto per la capacità di promuovere il buon umore e la tranquillità, diminuendo tra l'altro lo stimolo della fame. la concentrazione cerebrale di serotonina può essere modificata con la scelta del cibo; ad esempio, i cibi ricchi di zuccheri semplici e triptofano, aumentano i livelli di serotonina. Le Catecolamine (Adrenalina, Noradrenalina e Dopamina) svolgono un ruolo fondamentale nella capacità individuale di rispondere ai fattori stressanti. Lo stress, se non adeguatamente controllato, può condurre a problemi di natura psicologica, ridurre lo stato di benessere e aumentare il rischio di sviluppare patologie gravi come quelle cardiovascolari. Questi ormoni intervengono nella reazione chiamata "fight or flight", ovvero combatti o scappa che ha lo scopo di preparare l'organismo ad uno sforzo psicofisico importante in tempi brevissimi.

Bassi livelli di catecolamine possono provocare alterazioni dell'umore e sono state correlate ad un aumento del rischio di sviluppare la depressione. Anche i livelli di catecolamine sono influenzati dall'alimentazione, in quanto cibi ricchi in fenilalanina e tirosina, vitamine B1, B3 e B6 ne stimolano la sintesi.

Il gene **MAOA** codifica per la monoamino-ossidasi A, un enzima fondamentale per la degradazione di serotonina, noradrenalina e dopamina.

Il gene **SLC6A4** codifica per un trasportatore che rimuove la serotonina nello spazio presinaptico (re-uptake). La catecol-O-metiltrasferasi (**COMT**) è un enzima che insieme alle monoaminossidasi (MAO) degrada le catecolamine.

Il processo di metilazione regola la disponibilità di acido folico (folato o vitamina B9) e influisce sul metabolismo dei neurotrasmettitori modulando la sintesi di serotonina e catecolamine. La vitamina B9 è essenziale per la sintesi del DNA e delle proteine e per la formazione dell'emoglobina; negli ultimi decenni è stata riconosciuta fondamentale nella prevenzione di alcune malformazioni neonatali a carico del sistema nervoso (spina bifida). Una corretta introduzione dietetica di acido folico contribuisce anche a prevenire altre situazioni di rischio per la salute, ad esempio regolando i livelli ematici dell'aminoacido omocisteina, la cui elevazione risulta associata al rischio di sviluppare malattie cardiovascolari. Inoltre, il coinvolgimento dei folati nei processi proliferativi ne determina un ruolo importante nella prevenzione delle patologie tumorali. Più di 30 anni fa è stato suggerito un legame fra disturbi psichiatrici ed acido folico, ed è stato dimostrato come i disturbi dell'umore siano correlati con livelli plasmatici e cellulari più bassi di acido folico.

La metilen-tetra-idrofolato-reduttasi (MTHFR) è un enzima coinvolto nel metabolismo dell'acido folico. Nel gene MTHFR sono state identificate varianti genetiche che possono causare una riduzione dell'attività enzimatica fino al 70%, modificando il fabbisogno individuale di acido folico con la dieta.

La fame è verosimilmente il più antico istinto di ogni animale, rappresenta il segnale primordiale di fabbisogno di cibo ed è il segnale di un fabbisogno indispensabile alla sopravvivenza. Legato al segnale di fame è l'appetito, che rappresenta e costituisce il desiderio, mediato da fattori psicologici, di un determinato cibo. La sensazione di sazietà è indotta da segnali attivati dalla distensione dello stomaco e significa che le necessità che hanno spinto ad assumere cibo sono terminate.

Questi tre aspetti della gestione del cibo sono influenzati da fattori psicologici. Basti pensare al diffuso stato di nervosismo che accompagna i primi giorni di dieta ferrea, o al senso di benessere associato all'assunzione, e ancor prima alla vista e alla percezione dell'aroma, del cioccolato o di altri cibi particolarmente graditi.

La regolazione di questi meccanismi fisiologici è molto complessa, ed esistono alcuni geni che codificano per proteine coinvolte nella sensazione di fame e sazietà, giocando un ruolo importantissimo nella gestione dell'alimentazione e dei suoi risvolti sull'umore e la sensibilità allo stress.

Il gene FTO (fat mass and obesity associated), svolge un ruolo fondamentale nella regolazione del metabolismo lipidico e della lipolisi, cioè la capacità individuale di mobilizzare il grasso corporeo. È stato dimostrato come influenzi il controllo dell'appetito e la sensazione di fame e sazietà in relazione ai cibi assunti.

Il recettore della melanocortina 4 è una proteina codificata dal gene MC4R. Questo gene codifica la proteina MC4, un recettore accoppiato alla proteina G che lega l'ormone stimolante gli α -melanociti (α -MSH). I recettori MC4 sono coinvolti nello stimolo dell'appetito e nella regolazione del metabolismo.

PAG

NOME

Nome Cognome

DATA

gg/mm/aaaa

GLOSSARIO

BASI AZOTATE: sono gli elementi base del DNA, le "lettere" che ne compongono la catena: Adenina (A), Citosina (C), Guanina (G) e Timina (T).

DNA (acido deossiribonucleico): è la molecola presente nel nucleo della cellula che costituisce il patrimonio genetico, formata dalla successione delle 4 basi nucleotidiche. Nel DNA sono contenute le informazioni che consentono alle cellule di svolgere le funzioni vitali.

ENZIMA: proteina capace di catalizzare lo svolgimento di una reazione biochimica.

GENE: unità funzionale del DNA che codifica per una proteina.

GENOMA: totalità del materiale genetico di un organismo.

GENOTIPO: corredo genetico di un individuo, cioè l'insieme dei geni (unità funzionali) contenuti nel DNA.

POLIMORFISMO: variante del DNA che consiste nella sostituzione di una o più basi azotate con basi differenti. Per esempio, la sostituzione di Adenina (A) con Citosina (C).

PROTEINA: composto organico, costituito d'assemblaggio di unità funzionali chiamate aminoacidi. Le proteine costituiscono le basi del materiale di costruzione delle cellule e vengono sintetizzate per mezzo delle informazioni contenute nei geni. Possiedono inoltre la funzione di regolare o favorire le reazioni biochimiche nelle cellule: queste proteine vengono chiamate enzimi.

SNP: polimorfismo a singolo nucleotide, che comporta perciò la sostituzione di una sola base azotata.

VARIANTE: sinonimo di polimorfismo.

BIBLIOGRAFIA

Stein et al. CNS Spectr. 2006;11(10):745-748. doi:10.1017/s1092852900014863 # Montag et al. Behav Neurosci. 2008;122(4):901-909. doi:10.1037/0735-7044.122.4.901 # Zubieta et al. Science. 2003;299(5610):1240-1243. doi:10.1126/science.1078546 $\hbox{\# Amstadter et al. J Psychiatr Res. 2012;} 46 \hbox{(1):} 87-94. \\ \hbox{doi:} 10.1016/j.jpsychires.2011.09.017 \\ \hbox{\ensuremath{\sim}} 2012; 46 \hbox{\ensuremath{\sim}} 10.1016/j.jpsychires.2011.09.017 \\ \hbox{\ensuremath{\sim}} 10.1016/j.jpsych$

Leuchter et al. J Clin Psychopharmacol. 2009;29(4):372-377. # Fan et al. Psychiatr Genet. 2010;20(1):1–7. doi:10.1097/YPG.0b013e3283351112 # Furlong et al. Am J Med Genet. 1999;88(4):398–406.

SLC6A4

Lesch et al. Science. 1996;274(5292):1527-1531. doi:10.1126/science.274.5292.1527 # Grabe et al. Am J Psychiatry. 2009;166(8):926-933. doi:10.1176/appi.ajp.2009.08101542 # De Neve JE. J Hum Genet. 2011;56(6):456-459. doi:10.1038/jhg.2011.39

MTHFR

De Bree et al. Am J Clin Nutr 2003: 77:687-93. # Frosst et al. Nat Genet 1995; 10(1):111-3. # Bethke et al. Cancer Epidemiol Biomarkers Prev. 2008 May;17(5):1195-202.

Alpert et al. Nutr Rev. 1997;55(5):145-149. doi:10.1111/j.1753-4887.1997.tb06468.x

Wan et al. Transl Psychiatry. 2018;8(1):242. Published 2018 Nov 5. doi:10.1038/s41398-018-0276-6

Wardle et al. J Clin Endocrinol Metab. 2008;93(9):3640-3643. doi:10.1210/jc.2008-0472 # den Hoed et al. Am J Clin Nutr. 2009;90(5):1426-1432. doi:10.3945/ajcn.2009.28053 # Müller et al. Obes Facts. 2012;5(3):408-419. doi:10.1159/000340057 # Tanofsky-Kraff et al. Am J Clin Nutr. 2009;90(6):1483–1488. doi:10.3945/ajcn.2009.28439

Qi et al. Hum Mol Genet. 2008;17(22):3502–3508. doi:10.1093/hmg/ddn242 # Stutzmann et al. Int J Obes (Lond). 2009;33(3):373–378. doi:10.1038/ijo.2008.279

Horstmann et al. PLoS One. 2013;8(9): e74362. Published 2013 Sep 16. doi:10.1371/journal.pone.0074362

